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ABSTRACT

A series of seasonally varying linear Markov models are constructed in a reduced multivariate empirical
orthogonal function (MEOF) space of observed sea surface temperature, surface wind stress, and sea level
analysis. The Markov models are trained in the 1980-95 period and are verified in the 1964—79 period. It is
found that the Markov models that include seasonality fit to the data better in the training period and have a
substantially higher skill in the independent period than the models without seasonality. The authors conclude
that seasonality is an important component of ENSO and should be included in Markov models. This conclusion
is consistent with that of statistical models that take seasonality into account using different methods.

The impact of each variable on the prediction skill of Markov modelsisinvestigated by varying the weightings
among the three variables in the MEOF space. For the training period the Markov models that include sea level
information fit the data better than the models without sea level information. For the independent 1964—79
period, the Markov models that include sea level information have a much higher skill than the Markov models
without sea level information. The authors conclude that sea level contains the most essential information for
ENSO since it contains the filtered response of the ocean to noisy wind forcing.

The prediction skill of the Markov model with three MEOFsis competitive for both the training and independent
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periods. This Markov model successfully predicted the 1997/98 El Nifio and the 1998/99 La Nifia.

1. Introduction

The El Niflo—Southern Oscillation (ENSO) phenom-
enon has been extensively studied in the past two de-
cades. Significant progressin both understanding ENSO
and achieving useful prediction skill for the sea surface
temperature (SST) anomaly in the tropical Pacific has
been achieved during the Tropical Oceans Global At-
mosphere decade (1985-94; see review papers by
McCreary and Anderson 1991; Latif et al. 1994). Both
statistical and dynamical models are now used to make
experimental ENSO forecasts in real time (seethe ** Ex-
perimental Long Lead Forecast Bulletin” issued quar-
terly by the Center for Ocean-L and—Atmosphere Stud-
ies). The forecast SSTs have been used as boundary
forcings for atmospheric general circulation models in
producing seasonal climate outlooks (Barnett et al.
1994; Ji et al. 1994). Accurate prediction of the SST in
the tropical Pacific several seasons in advance is be-
coming increasingly important because significant so-
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cio-economic benefits can be achieved from improved
prediction of large-scale temperature and precipitation
on seasonal timescales.

The prediction skill of ENSO is often measured by
temporal correlation of large-scaleindices, such asarea-
averaged SST anomalies. Barnston et al. (1994) con-
cluded that the 6-month lead prediction skill of ENSO
during 1982—93 was modest (0.6 correlation) and that
the skill of statistical and dynamical models was com-
parable. Recently, Barnston et al. (1998) compared the
performance of statistical and dynamical models during
the 1997/98 El Nifio episode and the 1998 La Nifa
onset. They concluded that although many models fore-
casted some degree of warming prior to the onset of the
El Niflo in boreal spring 1997, none predicted its
strength until the event was already quite strong in late
spring. Neither the dynamical nor the statistical models,
as groups, performed significantly better than the other
during this episode. This study suggests that both sta-
tistical and dynamical modelshave significant errorsand
more work is needed to improve the models. Since sta-
tistical models are much easier to construct than dy-
namical models are, they will continueto serve asuseful
references with which more sophisticated dynamical
models can be compared.

Statistical models are often based on observed surface
winds, sea surfacetemperature, and near-global sealevel
pressure fields (Graham et al. 1987ab; Barnston and
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Ropelewski 1992; Penland and Magorian 1993). Since
oceanic heat content is an important component of
ENSO (Wyrtki 1985; Zebiak and Cane 1987; Zebiak
1989), subsurface ocean data are also valuable for sta-
tistical models. However, until recently there was no
ocean analysisin the tropical Pacific that covered a suf-
ficiently long period for this purpose. The ocean data
assimilation system at the National Centers for Envi-
ronmental Prediction (NCEP) began to produce an
ocean analysis in 1992 (Ji et al. 1995). Recently this
analysis system has been improved significantly (Beh-
ringer et al. 1998) and a retrospective analysis that cov-
ered about 18 yr has been produced.

We choose to use the sea level field from the NCEP
ocean analysis in addition to observed SST and surface
winds to construct Markov models. Sea level is chosen
because the tide gauge network [the Integrated Global
Ocean Services System sea level program in the Pacific
available online at http://uhslc.soest.hawaii.edu] pro-
vides an independent dataset for validation of the sea
level analysis. The accuracy of the sea level analysis at
NCEP is about 3—4 cm in the equatorial belt (Behringer
et a. 1998). These three variables were also used by
Blumenthal (1991) and Xue et al. (1994) to construct
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FiG. 1. The variance distributions of (a) observed SST anomalies,
(b) sealevel analysis anomalies, and (c) wind stress anomalies among
the EOF (solid) and MEOF (dashed) modes.

Markov models that were best fit to the outputs from
the Zebiak—Cane (ZC) model (Zebiak and Cane 1987).
Xue et al. (1994) found that the Markov model con-
structed with these three variables fits the ZC model
quite well up to a year, and the prediction skill of the
Markov model was comparableto that by the ZC model.

The Markov model in Xue et a. (1994) was con-
structed in a multivariate EOF (MEOF) space in which
SST, surface winds, and sea level were equally weight-
ed. An interesting question is how the prediction skill
of Markov models varies with the weightings among
the three variables. When one variableisheavily weight-
ed and other variables are much less weighted, the im-
pact of that variable on the prediction skill of Markov
models can be investigated. Smith et al. (1995) showed
that using the subsurface temperature datafrom aearlier
version of the NCEP ocean analysis, in addition to using
sea level pressure and SST data, improved the ENSO
forecast skill of the canonical correlation analysismodel
(Barnston and Ropelewski 1992). Johnson et al. (2000)
used observed SST anomalies and oceanic heat content
anomalies of the upper ocean to construct Markov mod-
els. They concluded that the skill of the Markov models
was improved by including oceanic heat content, but
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the improvement was not significant with high certainty.
They suggested that the usefulness of including sub-
surface temperature data in Markov models for ENSO
prediction was underestimated due to the limitation of
their data. In this paper we will use the latest sea level
analysis data to study the impact of sea level on the
prediction skill of Markov models. We will attempt to
demonstrate that the prediction skill of Markov models
can be improved significantly by including sea level
information.

Since El Nifio is phase locked with the annual cycle
(Philander 1983; Zebiak and Cane 1987), the statistics
of the anomalies fields associated with ENSO have a
strong seasonal dependency. Because of this seasonal
nonstationarity, Hasselmann and Barnett (1981) sug-
gested that the normal statistical analysis techniques
based on time-invariant models are inappropriate for
ENSO prediction. In the problem of predicting El Nifio
off South Americathey devel oped phase-averaged mod-
els and concluded that El Nifio is predicted with con-
siderably more confidence and accuracy using phase-
averaged models than with time-invariant models. In a
similar approach to that of Hasselmann and Barnett
(1981), Blumenthal (1991) developed seasonally vary-
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Fic. 2. The cumulative variance percentages of (a) observed SST
anomalies, (b) sealevel analysis anomalies, and (¢) wind stress anom-
alies by the first MEOF (solid), the first two MEOFs (dashed), and
the first three MEOFs (dotted) as functions of calendar months.

ing Markov models to best fit the outputs from the Ze-
biak—Cane model (Zebiak and Cane 1987). More re-
cently, Kim (2000) developed a unique prediction
scheme based on cyclostationary EOFs (Kim and North
1997). Since cyclostationary EOFs are specifically de-
signed for describing periodic statistics, they are pre-
sumably better basis functions than standard EOFs
based on which statistical models can be constructed.
However, cyclostationary EOFs are much more expen-
sive to compute than standard EOFs are. We choose to
use the method of Blumenthal (1991). We will argue
that MEOFs are useful basis functions based on which
seasonally varying Markov models are constructed to
account for the seasonal nonstationarity of ENSO.
The paper is organized into five sections. Section 2
describes the space reduction by MEOFs. Section 3 de-
scribes the construction of Markov models and the im-
portance of including seasonality in Markov models. In
section 4 we discuss how the prediction skill of Markov
models varies with the weightings among SST, wind
stress, and sea level. The prediction skill of the Markov
modelsis estimated using a cross-validation schemeand
an independent period. The Markov model’s predictions
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Fic. 3. The () first, (b) second, and (c) third MEOF patterns and PCs. Note that the PC of the second MEOF (dash) is shown in (a) as
well.

for the 1997/98 warm event and the 1998/99 cold event
are also discussed. Section 5 summarizes the paper.

2. Space reduction
a. Data

The SST data consist of two parts. from January 1964
to December 1981 it is the reconstruction of historical
SST by Smith et al. (1996); from January 1982 to Jan-
uary 1999 it isthe SST analysis by Reynolds and Smith
(1994). The wind stress data are The Florida State Uni-
versity (FSU) pseudo—wind stress product from January
1964 to January 1999 (Goldenberg and O’ Brien 1981).
Two sea level datasets are used. One is the sea level
dataset from the ocean analysis at NCEP, which covers
the period from January 1980 to January 1999 (Beh-
ringer et al. 1998). The second sea level dataset is ob-
tained from a ocean model simulation that uses the Geo-
physical Fluid Dynamics Laboratory MOM1 model
forced by the FSU wind stress analysis. This sea level
dataset covers the period from January 1964 to Decem-
ber 1995. The model configuration for this simulation

is similar to that of Ji and Smith (1995) except that the
total FSU wind stress (converted from the FSU pseudo—
wind stress with a drag coefficient of 1.3 X 10-%) are
used instead of a combination of the Hellerman and
Rosenstein (1983) climatology and the FSU wind stress
anomalies. All the datasets are monthly values and have
been interpolated onto acommon grid 1° lat X 1.5° long
with approximately 4600 grid points covering the trop-
ical Pacific region 20°S-20°N.

The Markov models aretrained in the 1980-95 period
using the anomal ous fields of observed SST, wind stress,
and sea level analysis obtained by removing the annual
cycles for 1980-95. The prediction skill of the Markov
models is estimated using the independent 1964—79 pe-
riod during which the anomal ous fields of observed SST,
wind stress, and model simulated sealevel dataare used
as initial conditions. These anomalous fields are ob-
tained by removing the annual cycles for 1980-95.

b. Space reduction

Asin Xue et a. (1994), two-step EOF analyses are
used to calculate M EOF modes based on which Markov
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Fic. 3. (Continued)

models are constructed. In the first step, the SST, wind
stress, and sea level anomaly fields are subject to EOF
analysis separately. Each field is represented by the first
few EOFs, which maximize the variance representation.
For example, a physical field represented by vector v(t)
is decomposed into EOFs e and principal components
(PCs) a(t) and filtered by truncating at the Jth EOF:

J

v(t) = X a(t)e.

j=1

@

In the present context, 91, 154, and 85 EOFs account
for 99% of the variance in the observed SST, wind stress,
and sea level anomaly fields, respectively. The variance
distributions of the EOFs of SST, wind stress, and sea
level are shown in Fig. 1. It is seen that the first two
EOFs of SST account for 52% and 13% of the tota
variance and each of the higher-order EOFs account for
less than 5% (Fig. 1a); the first three EOFs of sea level
account for 36%, 21%, and 9% of the total variance,
and each of the higher-order EOFs account for less than
5% (Fig. 1b). It is interesting that the variance per-
centage of the second EOF of SST is much smaller than
that of the first EOF, while the variance percentages of

the first two EOFs of sea level are comparable. The
variance distribution of wind stress is relatively flat
among the EOFs (Fig. 1c), indicating that the signal and
noise in the wind stress field are not well separated.
In order to reduce the space further and to have a
consistent multivariate basis, a second EOF analysisis
conducted. A vector b is constructed from the PCs of
SST, wind stress, and sea level:
a§3>
, €E3— .
O3

)

Here, a', a?, and a® are the PCs of SST, wind stress,
and sea level with dimensions J, = 91, J, = 154, and
J, = 85; €, €,, €; arethe weights assigned to SST, wind
stress, and sea level, respectively; o2, o3, and o3 are
the total variance described by each set of PCs:

1
aJl
e, €
(251 (251

2

a% an
€ e, €
03 op)

a;
€3y
O3

=X SlOr k=123 @

The vector b is then decomposed into EOFs f; and PCs
d,(t) and filtered by truncating at the Kth MEOF,



JOURNAL OF CLIMATE

VoLuME 13

(c) SST (°C) Sea Level (cm)
20N - 20N e
15N 4 15N e u ) L
10N - 10N}, 0
(]
o 5N 5N
3
= EQf EQ-
©
S 1 551
10S - 105+
15 - 155 1
205 1 T T T T T T L} 205 T ’\l T T T U T T
140E 160E 180 160W 140W 120W 100W BOW 140E 160E 180 160W 140W 120W 100W 80W
Longitude Longitude
Wind Stress (dyn/cm?) Principle Component
20N ¢ — y - — 7 7 P 7 0&‘ 1.5 " T N .
I ,,,.,_,/{%/ah
2z x A /’/’/‘ VA -
10N.§§l A a4 7‘ NN t < Vv ¢ €
[ b Nt N e c v ey o4y i
T S5NA . € e~ = = >
=] s - S
“ v —
E Bl Lo Ve o7 575
O  55- o RN VA /’/ /yJ'
— 7"’9 \\‘ Ve * A A e \
10517, N e
155-M\\§‘\\:—>\ N T >
3 e e
208 .b‘.\‘\.\ r —ad ezl 5 r : : :
140E 160E 180 160W 140W 120W 100W 80W 1980 1982 1984 1986 1988 1990 1992 1994 1996
B ——
03 Years

Fic. 3. (Continued)
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The PCs d;(t) represent the three physical fields in the
phase space spanned by the MEOFs and will be used
to construct Markov models in next section. The cor-
responding spatial pattern g;, containing three physical
fields, can be derived from the EOF patterns of each
variable g, the MEOF functions f;, and the weights ¢, ,
€,, €;. SO the combined fields of SST, wind stress, and
sea level are decomposed into spatial patterns g; and
PCs d(t).

We now examine the variance distribution among the
MEOFswhere SST, wind stress, and sealevel are equal-
ly weighted, for example, €, = 1, €, = 1, e, = 1. Figure
1 shows that the variance distributions of SST and sea
level among the MEOFs are very similar to those among
the EOFs, while the variance distribution of wind stress
among the EOFs and MEOFs are somewhat different.
This result indicates that the dominant EOFs of SST
vary coherently with those of sealevel, but the dominant
EOFs of wind stress do not. This is understood since
SST and sea level contain mainly low-frequency vari-

(4)

abilities associated with ENSO, while wind stress con-
tains a significant amount of high-frequency variabilities
not associated with ENSO. Figure 1 also shows that the
variance distributions of SST and sea level become flat
when the order of MEOFs is greater than 3. This sug-
gests that the appropriate number of MEOFs for the
construction of Markov models is 3.

The MEOF modes calculated for the whole time se-
ries do not necessarily maximize the variance represen-
tation for the time series at a specific calendar month.
Since the PC time series at a specific calendar month
are not orthogonal to each other, the variances among
the MEOFs are not separable. So we used cumulative
variance percentages, defined asy = 1 — ||Z — Z'|?/
IZl|2, to describe how well each physical field is rep-
resented by the first few MEOFs. Here Z represents the
original physical field, Z' isthe field represented by the
first few MEOFs, and || - ||? is the sum of the variance.
Figure 2 shows that the cumulative variance percentages
of SST, wind stress, and sealevel all vary with seasons,
and the seasonal variations are most prominent in sea
level. For sea level, the first MEOF accounts for 49%
of the variance in winter, but only 17% in summer, for
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Fic. 4. Hovmoeller plots of (a) SST anomalies, (b) zonal wind stress anomalies, and (c) sea level anomalies averaged in the equatorial
belt 2°S-2°N. For each variable the total field; the first, second, and third MEOF; and the residual field are shown in the first, second, third,
fourth, and fifth columns, respectively. In (a) the contour interval is 0.5; in (b) the contour interval is 0.1 except it is 0.05 for the third

MEOQOF; in (c) the contour interval is 3.

example, a change of 65% (Fig. 2b). However, when
the second MEOF is included, the seasonal variation is
much less. This suggests that the second MEOF con-
tributes to the variance more in summer than in winter,
which is opposite to what the first MEOF does. Includ-
ing the third MEOF increases the cumulative variance
percentage about 10% evenly for all the seasons. The
three MEOFs together account for about 63% of the
variance of sea level relatively evenly through the year.
For SST the cumulative variance percentage of the
first MEOF varies about 33% in a year, which is much
less than that of sea level (Fig. 2a). The three MEOFs
together explain about 60% of the variance of SST rel-
atively evenly through the year. In contrast, the three
MEOFs do not represent wind stress well, especially in
early summer (Fig. 2c). If we assume that the unrep-
resented variability of wind stress is not critical for
ENSO development, the three MEOFs span a useful
reduced space in which Markov models can be built.

c. Spatial and time variability of MEOFs

Figure 3 showsthe spatial patternsand the normalized
PCs of the first three MEOFs discussed above. Thefirst
MEOF pattern resembles a mature phase of ENSO
where the SST in the eastern and central Pacific is ab-
normally warm (Fig. 3a). Associated with the positive
SST anomalies are convergent winds on the equator
where the wind stress anomaly maximum is located to
the west of the SST anomaly maximum. In addition, the
sea level is anomalously high in the eastern Pacific and
low in the western Pacific. The PC shows maxima for
all the warm and cold events.

The second MEOF describes an onset phase of ENSO
because the PC of the second MEOF leads that of the
first MEOF by 9-12 months (Figs. 3a,b). Here the sea
level has a maximum on the equator east of the date
line. Associated with the sealevel maximum arepositive
SST anomalies near the date line. It is noted that the
negative SST anomalies along the west coast of South
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America are mainly dueto the 1982/83 event. Thewind
stress anomalies on the equator are convergent toward
the positive SST anomalies; off the equator an anom-
alous cyclonic flow in the northwest Pacific isassociated
with the SST anomalies in the subtropics. These cy-
clonic winds contribute to the sea level minimum in the
northwest Pacific.

The third MEOF pattern is characterized by a narrow
belt of positive SST anomalies on the equator in the
eastern Pacific surrounded by negative SST anomalies
off the equator (Fig. 3c). In this case the wind stressis
generally weak on the equator, while the sea level is
anomalously high in the whole equatorial belt. The PC
of the third MEOF indicates that this MEOF accounts
for the changes of structures from event to event.

The contribution of each MEOF to the variabilities
of SST, wind stress, and sea level on the equator are
shown in Fig. 4. For comparison, the total and residual
fields (defined as the differences between the total fields
and the fields spanned by the three MEOFS) are also
shown. For better displaying the signals, a 3-month run-
ning mean has been applied to the total and residual
fields of SST and sealevel, and a’5-month running mean

has been applied to the total and residual fields of wind
stress. It is seen in Fig. 4athat the first MEOF accounts
for most of the variability of SST on the equator and
the second MEOF is usually weak except during the
1982/83 and 1997/98 events. The third MEOF has some
weak variability in the far eastern Pacific. Theamplitude
of the residual field is typically 0.5°C except it is much
larger during the 1982/83 and 1997/98 events.

The variations of the first twvo MEOFs in zonal wind
stress are important while the variations of the third
MEOF is negligible (Fig. 4b). The amplitude of the
residual wind stress is as large as 0.4 dyn cm~2. Since
this is the 5-month running mean of the residual field,
the amplitude of the actual residual field can be even
larger.

Blanke et a. (1997) derived a residual wind stress
similar to that discussed above and suggested that such
residual wind stress anomalies can have a significant
impact on the predictability of ENSO. Similar results
are also obtained by Eckert and Latif (1997) and Moore
and Kleeman (1999). When a Markov model is con-
structed in the MEOF space spanned by the three
MEOFs, the potential impact of the residual wind stress
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on predictability of ENSO is ignored. Thisis also true
in most of dynamical coupled models in which atmo-
spheric components do not simulate such high-frequen-
cy winds well.

Figure 4c shows that all the three MEOFs contribute
to the equatorial sealevel variabilities significantly. The
first MEOF describes an east—west oscillation of sea
level, and the second MEOF describes a buildup of sea
level in the central equatorial Pacific. The third MEOF
describes an uniform sea level change across the equa-
torial belt. The amplitude of the residual sea level is
typically 3 cm, except it is much larger during the 1997/
98 event.

3. Markov models and seasonality
a. Markov models

Two kinds of Markov models are constructed, re-
ferred as nonseasonal and seasonal Markov models. The
deviations of the Markov models are provided in ap-
pendix. The nonseasonal Markov model contains one
monthly transition matrix, which is a first-order linear
regression based on the monthly PC time series. The

nonseasonal Markov model is very similar to the linear
inverse model by Penland and Magorian (1993). Xue
et a. (1994) constructed seasonal Markov models that
contain 12 monthly transition matrixes for month to
month evolution. Since the sample size for training each
of the 12 monthly transition matrixes is one-twelfth of
that for training the monthly transition matrix for the
nonseasonal Markov model, the statistical significance
of the seasonal Markov model is lower than that of the
nonseasonal Markov model. In order to increase the
statistical significance, we sacrificed some of the annual
cycle resolution by developing phase-averaged Markov
models (see the appendix for details). This approach is
similar to that of Hasselmann and Barnett (1981), who
used three harmonics to approximate the annual cycle.

b. Seasonality

The importance of seasonality in the ENSO system
has been discussed extensively using simple and inter-
mediate couple models (Philander 1983; Zebiak and
Cane 1987; Battisti 1988). It is also considered impor-
tant in statistical modeling for ENSO (Hasselmann and
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FiGc. 5. Seasonality in the seasonal Markov model with 3 retained MEOFs. (a) A schematic plot of the elements of the monthly transition
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months.

Barnett 1981; Barnston and Ropelewski 1992). How-
ever, there is a debate on whether seasonality should be
included in Markov models. The linear inverse model
by Penland and Magorian (1993) did not include sea-
sonality. Blumenthal (1991) and Xue et al. (1994), how-
ever, included seasonality in their Markov models,
which are best fits to the ZC model. Recently, Johnson
(2000) revisited some of the analyses in Penland and
Magorian (1993), and concluded that seasonality is an
important component of the deterministic dynamics of
ENSO. In a subsequent study, Johnson et al. (2000)
found that including seasonality in Markov models did
not significantly improve prediction skill because there
is atrade-off between the improvement of prediction by
including seasonality and the reduction in significance
of the model due to the reduction of sample size.

The seasonal variations of the model parameters of
the seasonal Markov models are shown in Fig. 5. It is
seen that the monthly transition matrices of the seasonal
Markov models are largely diagonal. This suggests that

persistence is dominant in monthly timescales. The sea-
sonal variations of the diagonal elements are small,
while the seasonal variations of the off-diagonal ele-
ments are substantial. In the 6-month transition matrix-
es, the off-diagonal elements are aslarge asthe diagonal
elements, indicating energy exchanges between the
MEOF modes (Fig. 6). Most of the matrix elementshave
substantial seasonal variations. These results indicate
that seasonality is generally small in monthly timescales
but is large in 6-month timescales. So including sea-
sonality in Markov models should improve prediction
skill more at long lead times than at short lead times.
Next we will compare the skill of the nonseasonal and
seasonal Markov models.

c. Sill comparison

A series of nonseasonal and seasonal Markov models
are constructed with different number of retained
MEOFs. The skill of the Markov models is measured
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FiG. 6. Same as Fig. 5 except for the 6-month transition matrixes.

by model—observation correlation of the averaged SST
anomaly in the Nifo-3.4 region (5°S-5°N, 170°-
120°W). Figure 7 shows a comparison between the skills
of the nonseasonal and seasonal Markov models for
1980-95. Since the data used for verification are also
used for constructing the models, this skill is referred
as noncross-validated skill later. When three MEOFs are
retained, the noncross-validated skill of the seasonal
Markov model is better than that of the nonseasonal
Markov model (Fig. 7a). As expected, the improvement
of skill at long lead times is larger than that at short
lead times. However, this improvement of skill might
not be statistically significant since the number of the
model parameters in the seasonal Markov models are
12 times that in the nonseasonal Markov model. With
10 retained MEOFs, the number of the model param-
etersin the nonseasonal Markov model isabout the same
asthat in the seasonal Markov model with threeretained
MEOFs. Figure 7a shows that the skill of the nonsea-
sonal Markov model with 10 retained MEOFs is still
lower than that of the seasonal Markov model with three
retained MEOFs. The above results suggest that sea-

sonal Markov models generally fit the data better than
nonseasonal Markov models.

The hindcast skill of the Markov models for the in-
dependent 1964—79 period is expected to be lower than
the noncross-validated skill for 1980-95 (Fig. 7b). Be-
sides, the hindcast skill is hurt due to the inaccuracy of
the sealevel simulation that is used asinitial conditions
for Markov modelsin this period. Behringer et al. (1998)
showed that the inaccuracy of the sea level simulation
is4-5 cm in the equatorial belt, which is 1-2 cm larger
than that of the sea level analysis. In addition, inter-
decadal changes of predictability of ENSO also con-
tribute to the lower skill in the pre-1980 period than in
the post-1980 period (Balmaseda et al. 1995).

The hindcast skill of the seasonal Markov model with
three retained MEOFs is significantly better than that
of the nonseasonal Markov model with three retained
MEOFs (Fig. 7b). Including more M EOFs does not help
the hin