Skip Navigation Links 
NOAA logo - Click to go to the NOAA home page National Weather Service   NWS logo - Click to go to the NWS home page
Climate Prediction Center

HOME > Outreach > Meetings > 33rd Annual Climate Diagnostics & Prediction Workshop > Abstracts

Simulating Multi-Season Past Droughts


Abstract Author: Ning Zeng, Brian Cook, Jin-Ho Yoon

Abstract Title: Future drying of the southern Amazon and Central Brazil in the CMIP3 models: role of seasonality

Abstract: Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.

NOAA/ National Weather Service
NOAA Center for Weather and Climate Prediction
Climate Prediction Center
5830 University Research Court
College Park, Maryland 20740
Page Author: Climate Prediction Center Internet Team
Page last modified: August 4, 2008
Information Quality
Privacy Policy
Freedom of Information Act (FOIA)
About Us
Career Opportunities