ENSO: Recent Evolution, Current Status and Predictions

Update prepared by:
Climate Prediction Center / NCEP
19 March 2018
Outline

Summary
Recent Evolution and Current Conditions
Oceanic Niño Index (ONI)
Pacific SST Outlook
U.S. Seasonal Precipitation and Temperature Outlooks
Summary
Summary

ENSO Alert System Status: La Niña Advisory

La Niña conditions are present.*

Equatorial sea surface temperatures (SSTs) are below average across the central and eastern Pacific Ocean.

A transition from La Niña to ENSO-neutral is most likely (~55% chance) during the March-May season, with neutral conditions likely to continue into the second half of the year.

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking [here](#).
From mid April to July 2017, near-to-above average SSTs spanned most of the equatorial Pacific.

During August 2017, above-average SSTs dissipated east of the date line.

Since September 2017, negative SST anomalies have persisted in the east-central equatorial Pacific.
Niño Region SST Departures (°C) Recent Evolution

The latest weekly SST departures are:

- Niño 4: -0.1°C
- Niño 3.4: -0.7°C
- Niño 3: -0.7°C
- Niño 1+2: -0.7°C
During the last four weeks, equatorial SSTs were below average across most of the central and eastern Pacific Ocean, and above average in parts of the western Pacific.
Global SST Departures (°C) During the Last Four Weeks

During the last four weeks, equatorial SSTs were above average in parts of the western Pacific and central Indian Oceans. SSTs were below average across the eastern Atlantic and most of the central and eastern Pacific Ocean.
During the last four weeks, below-average SSTs persisted across the east-central equatorial Pacific Ocean.
During the last four weeks, positive changes in equatorial SST anomalies were observed across most of the Pacific.
Upper-Ocean Conditions in the Equatorial Pacific

The basin-wide equatorial upper ocean (0-300 m) heat content is greatest prior to and during the early stages of a Pacific warm (El Niño) episode (compare top 2 panels), and least prior to and during the early stages of a cold (La Niña) episode.

The slope of the oceanic thermocline is least (greatest) during warm (cold) episodes.

Recent values of the upper-ocean heat anomalies (below average) and thermocline slope index (above average) reflect La Niña conditions.

The monthly thermocline slope index represents the difference in anomalous depth of the 20°C isotherm between the western Pacific (160°E-150°W) and the eastern Pacific (90°-140°W).
Positive subsurface temperature anomalies with large fluctuations in amplitude were present from mid-January through mid-July 2017. Negative anomalies lasted from August 2017 to February 2018. Since the end of February, temperatures have been positive.
Sub-Surface Temperature Departures in the Equatorial Pacific

In the last two months, positive subsurface temperature anomalies have strengthened across the western Pacific Ocean.

Recently, positive temperature anomalies at depth have shifted eastward to ~120°W. Negative anomalies persist closer to the surface between 170°W and 80°W.
Positive OLR anomalies (reduced convection and precipitation) were present near the Date Line. Negative OLR anomalies (enhanced convection and precipitation) was apparent over the western equatorial Pacific Ocean.

Low-level (850-hPa) winds were anomalous westerly over a small area of the western tropical Pacific Ocean. The winds were anomalous easterly over the east-central tropical Pacific.

Upper-level (200-hPa) winds were anomalous westerly over most of the tropical Pacific.
Intraseasonal variability in the atmosphere (wind and pressure), which is often related to the Madden-Julian Oscillation (MJO), can significantly impact surface and subsurface conditions across the Pacific Ocean.

Related to this activity:

Significant weakening of the low-level easterly winds usually initiates an eastward-propagating oceanic Kelvin wave.
Weekly Heat Content Evolution in the Equatorial Pacific

From August 2017- early January 2018, negative subsurface anomalies persisted in the central and eastern Pacific Ocean.

From December 2017- February 2018, a downwelling Kelvin wave contributed to the eastward shift of above-average subsurface temperatures.

From mid January 2018 to present, an upwelling Kelvin wave resulted in below-average subsurface temperatures in the central and east-central Pacific.

Since early February 2018, another downwelling Kelvin wave has led to positive subsurface anomalies as far east as ~120ºW.

Equatorial oceanic Kelvin waves have alternating warm and cold phases. The warm phase is indicated by dashed lines. Downwelling and warming occur in the leading portion of a Kelvin wave, and upwelling and cooling occur in the trailing portion.
Low-level (850-hPa)
Zonal (east-west) Wind Anomalies (m s⁻¹)

Through mid-January 2018, easterly wind anomalies prevailed across the central equatorial Pacific.

Since mid-October 2017, the Madden Julian Oscillation (MJO) contributed to the eastward propagation of low-level wind anomalies.
Upper-level (200-hPa) Velocity Potential Anomalies

Until March 2018, anomalous upper-level divergence (green shading) generally persisted near Indonesia.

Eastward propagation of regions of upper-level divergence (green shading) and convergence (brown shading) have been evident from at least September 2017 to the present.

Unfavorable for precipitation (brown shading)
Favorable for precipitation (green shading)

Note: Eastward propagation is not necessarily indicative of the Madden-Julian Oscillation (MJO).
Outgoing Longwave Radiation (OLR) Anomalies

At least since September 2017, positive OLR anomalies generally persisted over the central Pacific Ocean. At the same time, negative OLR anomalies were intermittent near the Maritime Continent. Recently, negative OLR anomalies have returned near the Maritime Continent.

Drier-than-average Conditions (orange/red shading)
Wetter-than-average Conditions (blue shading)
The ONI is based on SST departures from average in the Niño 3.4 region, and is a principal measure for monitoring, assessing, and predicting ENSO.

Defined as the three-month running-mean SST departures in the Niño 3.4 region. Departures are based on a set of improved homogeneous historical SST analyses (Extended Reconstructed SST - ERSST.v5). The SST reconstruction methodology is described in Huang et al., 2017, J. Climate, vol. 30, 8179-8205.)

It is one index that helps to place current events into a historical perspective.
El Niño: characterized by a positive ONI greater than or equal to +0.5°C.

La Niña: characterized by a negative ONI less than or equal to -0.5°C.

By historical standards, to be classified as a full-fledged El Niño or La Niña episode, these thresholds must be exceeded for a period of at least 5 consecutive overlapping 3-month seasons.

CPC considers El Niño or La Niña conditions to occur when the monthly Niño3.4 OISST departures meet or exceed +/- 0.5°C along with consistent atmospheric features. These anomalies must also be forecasted to persist for 3 consecutive months.
The most recent ONI value (December 2017 - February 2018) is -0.9°C.
Recent Pacific warm (red) and cold (blue) periods based on a threshold of +/- 0.5 °C for the Oceanic Niño Index (ONI) [3 month running mean of ERSST.v5 SST anomalies in the Niño 3.4 region (5N-5S, 120-170W)]. For historical purposes, periods of below and above normal SSTs are colored in blue and red when the threshold is met for a minimum of 5 consecutive over-lapping seasons.

The ONI is one measure of the El Niño-Southern Oscillation, and other indices can confirm whether features consistent with a coupled ocean-atmosphere phenomenon accompanied these periods. The complete table going back to DJF 1950 can be found [here](#).

<table>
<thead>
<tr>
<th>Year</th>
<th>DJF</th>
<th>JFM</th>
<th>FMA</th>
<th>MAM</th>
<th>AMJ</th>
<th>MJJ</th>
<th>JJA</th>
<th>JAS</th>
<th>ASO</th>
<th>SON</th>
<th>OND</th>
<th>NDJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>2007</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-1.4</td>
<td>-1.5</td>
<td>-1.6</td>
</tr>
<tr>
<td>2008</td>
<td>-1.6</td>
<td>-1.4</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.7</td>
</tr>
<tr>
<td>2009</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>2010</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.4</td>
<td>-0.1</td>
<td>-0.6</td>
<td>-1.0</td>
<td>-1.4</td>
<td>-1.6</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-1.6</td>
</tr>
<tr>
<td>2011</td>
<td>-1.4</td>
<td>-1.1</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-1.0</td>
</tr>
<tr>
<td>2012</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>2013</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>2014</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>2015</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>2016</td>
<td>2.5</td>
<td>2.2</td>
<td>1.7</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>2017</td>
<td>-0.3</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>2018</td>
<td>-0.9</td>
<td></td>
</tr>
</tbody>
</table>
A transition from La Niña to ENSO-neutral is expected during the Northern Hemisphere spring (~55% chance of ENSO-neutral during March-May). Thereafter, ENSO-neutral conditions are likely into the second half of the year.
The majority of models predict La Niña to persist into Northern Hemisphere spring 2018, with a return to ENSO-neutral by summer 2018.
The CFS.v2 ensemble mean (black dashed line) favors borderline ENSO-neutral or La Niña conditions into Northern Hemisphere fall 2018.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From mid January to mid February 2018, the western United States was characterized by above-average heights and temperatures.

Then during late February and early March 2018, the pattern shifted with strong ridging over the North Pacific Ocean, and a downstream trough over the western United States, contributing to below-average temperatures.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From mid January to mid February 2018, the western United States was characterized by above-average heights and temperatures.

Then during late February and early March 2018, the pattern shifted with strong ridging over the North Pacific Ocean, and a downstream trough over the western United States, contributing to below-average temperatures.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From mid January to mid February 2018, the western United States was characterized by above-average heights and temperatures.

Then during late February and early March 2018, the pattern shifted with strong ridging over the North Pacific Ocean, and a downstream trough over the western United States, contributing to below-average temperatures.
U.S. Temperature and Precipitation Departures During the Last 30 Days

End Date: 17 March 2018
U.S. Temperature and Precipitation Departures During the Last 90 Days

End Date: 17 March 2018
The seasonal outlooks combine the effects of long-term trends, soil moisture, and, when appropriate, ENSO.
ENSO Alert System Status: La Niña Advisory

La Niña conditions are present.*

Equatorial sea surface temperatures (SSTs) are below average across the central and eastern Pacific Ocean.

A transition from La Niña to ENSO-neutral is most likely (~55% chance) during the March-May season, with neutral conditions likely to continue into the second half of the year.

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking here.